
S Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188
Public reporting burden for this coilection of information is estimated to average 1 hour per response, including the time for reviewing instructios, sseerching data sources,
gathering and maintaining the data needed, and competing and reviewing the collection of information. Send comments r ~rding this burden estmate or any other aspect of this collection
of information, including suggestions for reducing this buden to Washington Headquarters Service. Directorate for Information Operations and Reports.
1215 Jefferson Davis Highway, Sulte 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT DATE 3. DATES COVERED (From - To)

15 - 07 - 2002 Annual Technical Proaress 09 July 2001-30 June 2002
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Language-based Security for Malicious Mobile Code
5b. GRANT NUMBER

N00014-01-1-0968
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Fred B. Schneider,
Dexter Kozen, 5o. TASK NUMBER

Greg Morrisett and
Andrew Myers S5. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Cornell University REPORT NUMBER

Ithaca, NY 14853

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

Office of Naval Research ONR
Ballston Centre Tower ONE 11. SPONSORINGIMONITORING

800 North Quincy Street AGENCY REPORT NUMBER

Arlington, VA 22217-5660
12. DISTRIBUTION AVAILABILITY STATEMENT

Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Report summarizes progress over the past year in developing language-based technologies for
defending software systems against attacks from mobile code and system extensions.

20020718 080
15. SUBJECT TERMS

In-lined reference monitors, proof carrying code, end-to-end security, information flow enforcement

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
ABSTRACT OF PAGES

a. REPORT b. ABSTRACT c. THIS PAGE

U U U UU 19b. TELEPONE NUMBER (Include area code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI-Std Z39-18



Language-based Security for Malicious Mobile Code

N00014-01-1-0968

Annual Report
09 July 2001 - 30 June 2002

Fred B. Schneider (Principal Investigator)
Dexter Kozen, Greg Morrisett, and Andrew Myers (Co-Investigators)

Department of Computer Science
Cornell University

Ithaca, New York 14853

Overview

Mobile code provides a convenient, efficient, and economical way to extend
the functionality and improve the performance of networked computing sys-
tems. It is an approach that has been widely embraced, as evidenced by
today's operating systems, web browsers, and applications with their sup-
port for "plug-and-play", Javascript, downloaded helper applications, and
executable attachments. Yet today's security architectures provide poor
protection from faulty, much less from malicious, extensions. Our informa-
tion systems are thus increasingly susceptible to attacks-attacks that can
have devastating consequences.

This project is investigating programming language technology-program
analysis and program rewriting-for defending software systems against at-
tacks from mobile code and system extensions. The approach promises to
support a wide range of flexible, fine-grained access-control and information-
flow policies. Only a small trusted computing base seems to be required.
And the run-time costs of enforcement should be low.

Our progress over the past year is summarized below. Details can be
found in the publications whose citations are given following all the sum-
maries. A list of DoD interactions and technology transitions appears at the
end of the report.



In-lined Reference Monitors

In-lined reference monitors are a new approach to implementing traditional
reference monitors. A desired end-to-end security policy is formulated using
a high-level declarative policy language., and then a rewriting tool is used
to automatically rewrite untrusted code into code that respects the policy.
The rewriting tool works by inserting extra state and dynamic checks into
the untrusted code so that the code becomes self-monitoring.

Over the past year, we made progress towards understanding issues as-
sociated with the deployment of IRMs in a production operating system.
A set of kernel modifications was developed to support a prototype IRM
rewriter in Microsoft's Windows. This work seems to suggest the need for
mechanism to identify which policy is applied to any given executable and
for mechanism to manage multiple executables (each enforcing a different
policy). For example, .NET caches dll's (executables), and the architecture
for how that cache is managed needs to work differently when the same
dll could have been rewritten in multiple ways (to enforce one or another
different policies).

In addition, a prototype MSIL (Microsoft Intermediate language) in-
lined reference monitor (IRM) realization is now operational. It imple-
ments an aspect-oriented programming metaphor for MSIL assembly lan-
guage (rather than for a high-level language). An aspect-oriented program
comprises aspects, each of which consists of a point-cut and some advice.
The point-cut is a predicate that specifies where to do rewriting in target
code, and the advice specifies how to do the rewriting. Designing a point-cut
language that provides complete visibility at a high-level into an assembly
language is an interesting challenge; we plan next to turn our attention to
this.

Cyclone Compiler

Today, our computing and communications infrastructure is built using un-
safe, error-prone languages such as C or C++ where buffer overruns, for-
mat string errors, and space leaks are not only possible, but frighteningly
common. In contrast, type-safe languages, such as Java, Scheme, and ML,
ensure that such errors either cannot happen (through static type-checking
and automatic memory management) or at least are caught at the point of
failure (through dynamic type and bound checks.) This fail-stop guarantee
is not a total solution, but it does isolate the effects of failures, facilitates

2



testing and determination of the true source of failures, and enables tools
and methodologies for achieving greater levels of assurance.

The obvious question is: "Why don't we re-code our infrastructure us-
ing type-safe languages?" Though such a technical solution looks good on
paper, the cost is simply too large. For instance, today's operating systems
consist of tens of millions of lines of code. Throwing away all of that C code
and reimplementing it in, say Java, is simply too expensive, and in some
situations, not even possible.

An alternative approach is to try to adapt safe language technology to
legacy C and C++ systems. The ideal solution should:

* catch most errors at compile time,

9 give a fail-stop guarantee at run time, and

* scale to millions of lines of code

while simultaneously:

"* minimizing the cost of porting the code from C/C++,

"• interoperating with legacy code,

"* giving programmers control over low-level details needed to build sys-
tems.

As a step towards these goals, we have been developing Cyclone, a type-
safe programming language that can be roughly characterized as a "superset
of a subset of C." The type system of Cyclone accepts many C functions
without change and uses the same data representations and calling conven-
tions as C for a given type constructor. It also rejects many C programs to
ensure safety. For instance, it rejects programs that perform (potentially)
unsafe casts, that use unions of incompatible types, that (might) fail to ini-
tialize a location before using it, that use certain forms of pointer arithmetic,
or that attempt to do certain forms of memory management.

All of the analyses used by Cyclone are local (i.e., intra-procedural) so
we can ensure scalability and separate compilation. The analyses have also
been carefully constructed to avoid unsoundness in the presence of threads.
The price paid is that programmers must sometimes change type definitions
or prototypes of functions, and occasionally they must rewrite code.

We find that programmers must touch about 10% of the code when
porting from C to Cyclone. Most of the changes involve choosing pointer
representations and only a very few involve region annotations (around 0.6

3



% of the total changes.) In the future, we hope to minimize this burden by
providing a porting tool that utilizes a more global analysis to determine
the appropriate representation.

The performance overhead of the dynamic checks depends upon the ap-
plication. For systems applications, such as a simple web server, we see no
overhead at all. This is not surprising, as these applications tend to be I/O-
bound. For scientific applications, we see a much larger overhead (around 5x
for a naive port, and 3x with an experienced programmer). We believe much
of this overhead is due to bounds and null pointer checks on array access.
We have incorporated a simple, intra-procedural analysis to eliminate many
of those checks and indeed, this results in a marked improvement. However,
some of the overhead is also due to the use of "fat pointers" and the fact
that GCC does not always optimize struct manipulation. By unboxing the
structs into variables, we may find a marked improvement.

Secure Program Partitioning

Our secure program partitioning provides the means to ensure that data
confidentiality and integrity are preserved in distributed systems that con-
tain untrusted hosts and mutually distrusting principals. This problem is
particularly relevant to information systems used by mutually distrusting
organizations, such as the dynamic coalitions that arise in military settings.

In our approach, programs are automatically partitioned into communi-
cating subprograms that run on the available, partially trusted hosts. The
partitioning automatically extracts a secure communications protocol, and if
any host is subverted, then only principals that have explicitly stated trust
in that host need fear a violation of confidentiality. That is, for a given
principal p, the partitioned program we create is robust against attacks on
hosts not trusted by p. To protect data integrity, information and code are
also replicated across the available hosts.

We have implemented these techniques in Jif/split, an extension to our
publicly released Jif compiler that statically enforces information flow con-
trol, in conjunction with a distributed run-time system that securely exe-
cutes partitioned programs while guarding against subverted or malicious
hosts. New protocols had to be developed in order to permit secure transfer
of control between one group of host replicas and another. And to under-
stand the practicality of our approach, secure distributed systems have been
implemented using Jif/split, including various secure auction protocols. Per-
formance of the system is quite reasonable, despite the fine-grained program

4



partitioning.

Publications Supported under this Grant

(1) Allegra Angus and Dexter Kozen. Kleene algebra with tests and pro-
gram schematology. Technical Report 2001-1844, Computer Science
Department, Cornell University, July 2001.

(2) Adam Barth and Dexter Kozen. Equational verification of cache block-
ing in LU decomposition using Kleene algebra with tests. Technical
Report 2002-1865, Computer Science Department, Cornell University,
June 2002.

(3) James Cheney and Ralf Hinze. Poor man's generics and dynamics.
Haskell Workshop 2002. To appear.

(4) Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional poly-
morphism in type erasure semantics. Journal of Functional Program-
ming. To appear.

(5) Dan Grossman. Existential Types for Imperative Languages. Type
checking systems code. Eleventh European Symposium on Program-
ming (Grenoble, France, April 2002), Lecture Notes in Computer Sci-
ence Volume 2305, 21-35.

(6) D. Grossman, G. Morrisett, T. Jim, M. Hicks, J. Cheney, and Y. Wang.
Region-based memory management in Cyclone. ACM Conference on
Programming Language Design and Implementation (Berlin, Germany,
June 2002), 282-293.

(7) David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic logic. In
D.M. Gabbay and F. Guenthner, editors, Handbook of Philosophical
Logic, Volume 4, Kluwer, 2nd edition, 2002, 99-217.

(8) T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang.
Cyclone: A safe dialect of C. Usenix Annual Technical Conference
(Monterey, CA, June 2002).

(9) Dexter Kozen. On two letters versus three. In Zolt~n tsik and Anna
Ing6lfsd6ttir, editors, Proceedings of Workshop on Fixed Points in
Computer Science (FICS'02), July 2002, 44-50.

5



(10) Dexter Kozen. Some results in dynamic model theory (abstract). In
E. A. Boiten and B. M6ller, editors, Proceedings Conference on Math-
ematics of Program Construction (MPC'02), Lecture Notes in Com-
puter Science Volume 2386 (July 2002), 21.

(11) Dexter Kozen. On the complexity of reasoning in Kleene algebra.
Information and Computation. To appear.

(12) Dexter Kozen. Computational inductive definability. Submitted for
publication.

(13) Dexter Kozen and Matt Stillerman. Eager class initialization for Java.
Proceedings 7th International Symposium on Formal Techniques in
Real-Time and Fault Tolerant Systems (FTRTFT'02), IFIP, (Ger-
many, Sept. 2002). To appear.

(14) Dexter Kozen and Jerzy Tiuryn. On the completeness of propositional
Hoare logic. Information Sciences 139, 2001. 187-195.

(15) G. Morrisett. Type checking systems code. Eleventh European Sympo-
sium on Programming (Grenoble, France, April 2002), Lecture Notes
in Computer Science Volume 2305, 1-5.

(16) G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-based typed
assembly language. Journal of Functional Programming 12, No. 1
(January 2002), University Press, Cambridge, England, 43-88.

(17) Andrei Sabelfeld and Andrew C. Myers. End-to-end security via pro-
gram analysis. Submitted for publication.

(18) Frederick Smith. Certified Run-Time Code Generation. Ph.D. Thesis,
Cornell University, January 2002.

(19) Frederick Smith, Dan Grossman, Greg Morrisett, Luke Hornof, and
Trevor Jim. Compiling for template-based run-time code generation.
Journal of Functional Programming, Special issue on Semantics, Ap-
plications, and Implementation of Program Generation. To appear.

(20) Stephanie Weirich. Higher-order intensional type analysis. Eleventh
European Symposium on Programming (Grenoble, France, April 2002),
Lecture Notes in Computer Science Volume 2305, 98-114.

(21) Stephanie Weirich. Programming With Types. Ph.D. Thesis, Cornell
University, July 2002.

6



(22) Steve Zdancewic and Andrew C. Myers. Secure information flow and
linear continuations. Higher Order and Symbolic Computation, 15 (2-
3), 2002. To appear.

(23) Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C.
Myers. Untrusted hosts and confidentiality: Secure program partition-
ing. Proceedings of the 18th ACM Symposium on Operating Systems
Principles (Banff, Canada, October 2001), 1-14.

(24) Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C.
Myers. Secure program partitioning. ACM Transactions on Comput-
ing Systems. To appear.

(25) Lantian Zheng, Stephen Chong, Steve Zdancewic, and Andrew C. My-
ers. Enforcing end-to-end integrity with replicated code partitions.
Submitted for publication, May 2002.

DoD Interactions and Technology Transitions

o Schneider chaired a study for DARPA IPTO Program Manager Jay
Lala on promising research directions for Self-Healing Networked In-
formation Systems.

o Morrisett and Schneider continue working with Microsoft on develop-
ing a .NET version of our in-lined reference monitor (IRM) approach
to security-policy enforcement. Next Fall, Cornell graduate student
Kevin Hamlen will spend a semester visiting Microsoft Research (in
Cambridge, England). The MSIL rewriter we have developed uses
some software developed there, and this visit will speed the implemen-
tation of our new IRM tool.

o Researchers at Carnegie-Mellon University, Princeton University, Uni-
versity of California (Riverside), University of Newcastle-Upon-Tyne,
and Intel Research are all now building on PoET/PSLang IRM tools
developed by Schneider and collaborators.

e Further public releases of Myers' Jif compiler have been made available
at the Jif web site, http://www.cs.cornell.edu/jif. The Jif language
extends the Java programming language with support for information
flow control. The Jif compiler is implemented on top of the Polyglot ex-
tensible compiler framework for Java. The Polyglot framework has also
been released publicly at http://www.cs.cornell.edu/projects/polyglot,

7



and researchers at Princeton University are using this framework in
their own research. The releases of both Jif and Polyglot are provided
as Java source code and work on Unix and Windows platforms.

e AT&T research is working with us to develop the Cyclone language,
compiler, and tools. In addition, researchers at the University of
Maryland, the University of Utah, Princeton, and the University of
Pennsylvania, and Cornell are all using Cyclone to develop research
prototypes.

8


